

IC1301 - WiPE

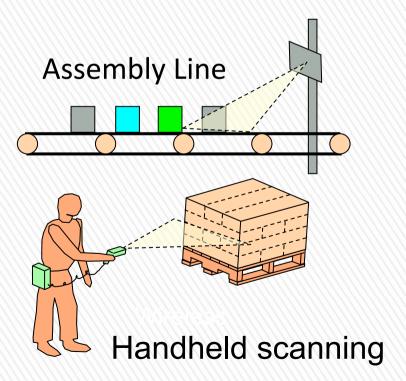
Wireless Power
Transmission for
Sustainable Electronics

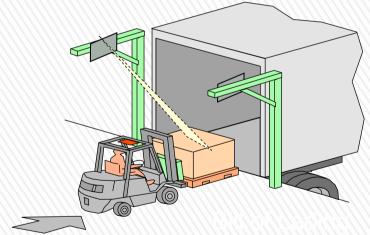
WIPE related activities at Aalborg University

(IR-UWB and WPT for medium range battery-less RFID)

Ming Shen, Ph.D and Jan H. Mikkelsen, Ph.D

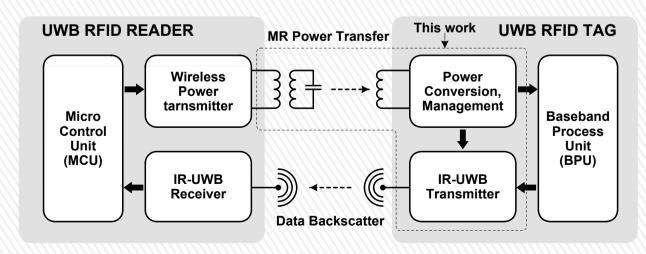
Aalborg University


Agenda


- » Why medium range RFID, WPT and IR-UWB
- » IR-UWB with MR WPT for medium range RFID
 - > Magnetic resonance (MR) for medium range WPT
 - > Low power IR-UWB front-end for battery-less data backscattering
- » Conclusion
- » Other WIPE related activities and plans for future activities

Why medium range RFID, WPT and IR-UWB

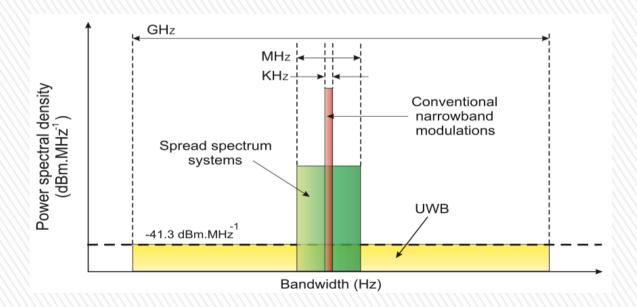
- » RFID technologies for medium range (0.1m-1m) applications are needed
 - > Conventional passive RFID for cm-range applications
 - > Active RFID for > 10m-range applications


Shipping Portals

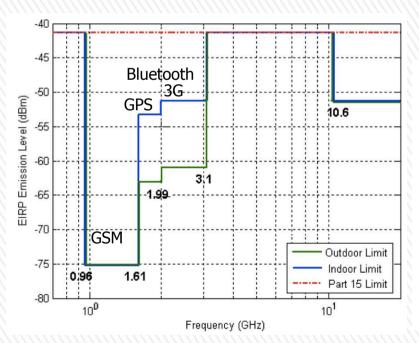
Why medium range RFID, WPT and IR-UWB

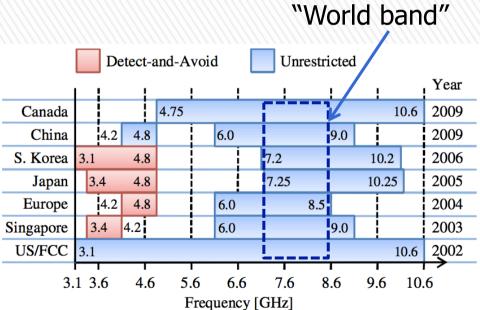
- » Why WPT Conventional power solutions are unsuitable for medium range RFID
 - > Magnetic induction is only for a few cm
 - > RF power transfer suffers from low efficiency (significant path loss) and stringent sensitivity requirement
- » Why IR-UWB communication technologies in conventional RFID are unsuitable for batteryless medium range RFID
 - > Inductive coupling is only for cm-range data backscattering
 - Non-UWB long-range communication circuits are usually power consuming: requiring batteries

IR-UWB with MR WPT for medium range battery-less RFID


- » MR WPT for reader-to-tag powering
- » IR-UWB for data backscattering
- » Asymmetric coil: large reader coil for extended range; small tag coil for compact size, resonance tag coil is not mandatory

Low power IR-UWB front-end - What is UWB


- » UWB is a technology for transmitting information spread over a large bandwidth that should be able to share spectrum with other users
- » Absolute bandwidth larger than 500 MHz or a relative bandwidth larger than 20% [FCC, 2002]



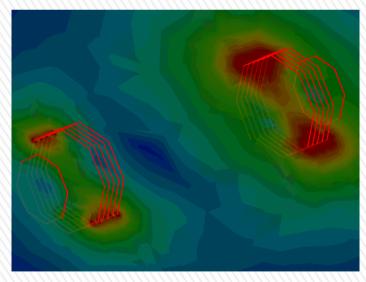
Low power IR-UWB front-end – What is UWB

- » Power emission limits
- » Frequency bands limits
- » Interference mitigation limits

BW = 1.4 GHz $BW_{rel} = 12.5\%$

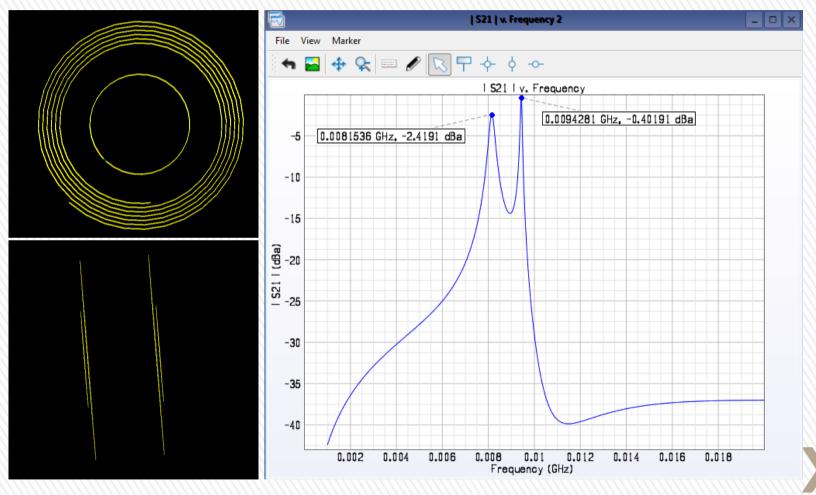
Low power IR-UWB front-end – What is UWB

» The Impulse-Radio UWB (IR-UWB) method employs transmission by means of ultra short duration pulses on the order of nanoseconds


1/τ[sec]≈BW[Hz]

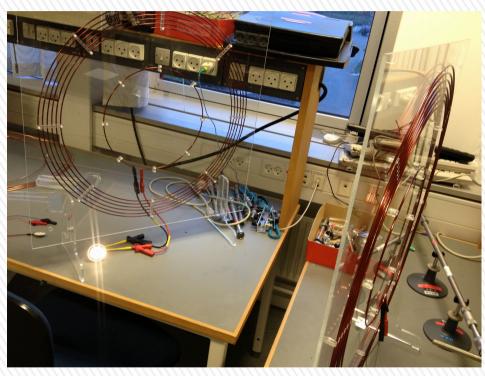
- > Power efficient-low duty cycle
- > Scalable data rates versus distance
- > Precise localization
- > Multipath signal can be exploited in a rake Rx

Magnetic resonance for medium range WPT


- » High efficiency up to about 95%
- » Power transfer range up to 5 meters¹
- » Capable of powering multiple devices simultaneously
- "Uniform" energy field within the target space

Simulated E-field (animation) using Agilent EMPro of a magnetic resonance wireless power transfer setup. The area between the Tx and Rx is filled with energy, while the field strength drops remarkably outside the area.

Magnetic resonance for medium range WPT



Simulation setup

Simulated |S₂₁|

Magnetic resonance for medium range WPT

- » Outer coil diameter is 60 cm, inner coil diameter is 28 cm
- » 6.5 MHz 8.5 MHz with Tx-to-Rx distance from 10 cm to 50 cm
- » Flexible coil position

An LED lamp bulb (full power 3.8 W) wirelessly powered by an ordinary RF signal generator with 50 Ohm source impedance.

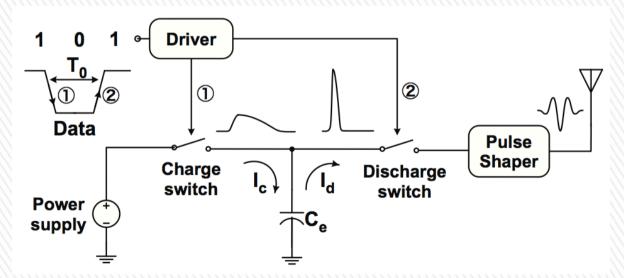
Low power IR-UWB front-end – IR-UWB's suitability for medium range RFID

» Potential for low power using simple CMOS transmitters

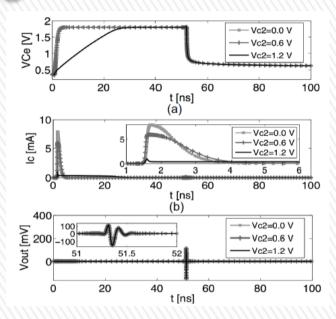
- > Suitable for battery or energy harvesting based devices
- > Low power is CMOS friendly
- > "Moore's Law Radio" Data rate scales with the shorter pulse widths made possible with ever faster CMOS circuits

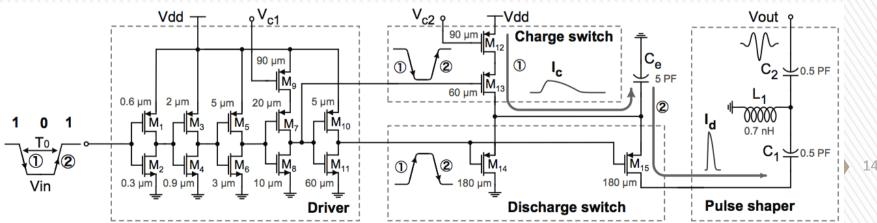
» Potential for low cost implementation

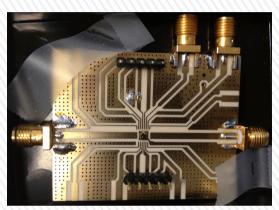
- > Nearly "all-digital" radio
- > Integration of more components on a chip


» Potential for small size implementation

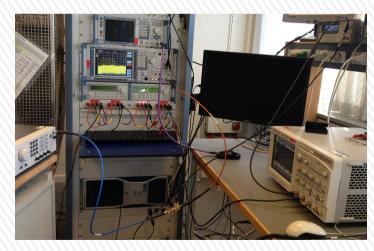
> Nearly "all-digital" radio

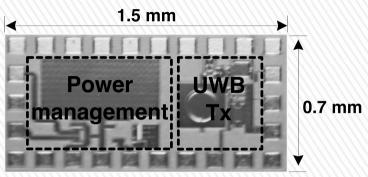

Low power IR-UWB front-end - low instantaneous power pulse generator

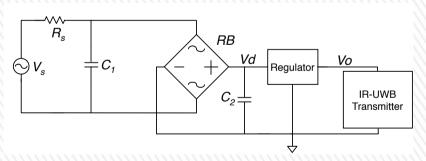

- » The IR-UWB design has close ties to energy harvesting
- » With low energy power sources, meeting peak power requirements is always challenging


Low power IR-UWB front-end - low instantaneous power pulse generator

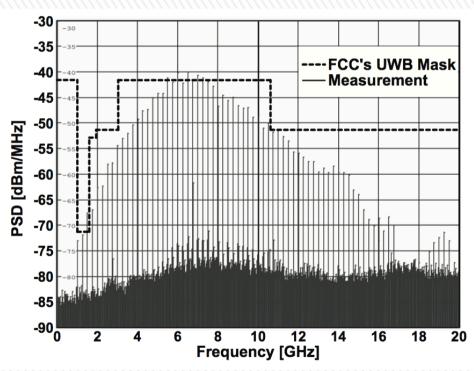
- » Running a slow-charge and fast-discharge approach mitigates (parts of) the problem (one-pulse storage)
- » Data-rate depends on the characteristics of the source




Low power IR-UWB front-end – power management and measurements


Test PCB

Measurement setup


Microphotograph of the IR-UWB Tx with Power management

System block diagram (V_s is 6.78MHz)

Low power IR-UWB front-end – power management and measurements

» Measured PSD with a PRR of 250 Mpps

Measured total current

Measured PSD of the UWB pulse signal

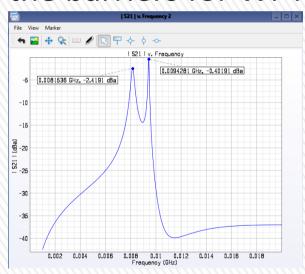
Low power IR-UWB front-end – power management and measurements

- » Slow charge for energy storage and fast discharge for narrow pulse generation
- » Low instantaneous power consumption (6-10.4mW)
- » Supports OOK modulation
- » Low average power consumption (5-18pJ/pulse)
- » Average power180μW@10Mbpb
- » Chip area 0.16mm²

TABLE I COMPARISON OF MEASURED PERFORMANCE

Ref	CMOS [μm]	PRR [Mpps]	EP pJ/pulse	BW [GHz]	PP [mW]	Area [mm ²]
[3]	0.18	250	20	3-5	N/A	0.08
[4]	0.13	100	9	6.8	90	0.54
[5]	0.18	100	18	0.53	N/A	0.4
[6]	0.13	50	48	3.1-4.8	N/A	0.11
[7]	0.09	400	65	5.5	N/A	1.9
This work	0.18	10 250 1000	18 14.6 5.0*	7.5 6.75 6.0	6.0 10.0 10.4*	0.16

^{*:} Simulation


M. Shen, Y.-Z. Yin, H. Jiang, T. Tian, and J. Mikkelsen, "A 3-10 GHz IR-UWB CMOS Pulse Generator With 6 mW Peak Power Dissipation Using A Slow-Charge Fast-Discharge Technique," Microwave and Wire-less Components Letters, IEEE, vol. 24, no. 9, pp. 634–636, Sep. 2014.

Conclusion

- » MR WPT is a promising powering approach for medium range RFID applications
- » MR WPT has the potential to power multiple tags in the targeted area
- » IR-UWB features microwatt power consumption, and is suitable for medium range RFID applications

Other WIPT related activities and future activities

- » Simultaneous wireless information and power transfer using dual coupling frequencies
- » Health issues in WPT and mitigation approaches: one of the barriers for WPT

Dual-frequency coupling

SAR measurement setup at AAL

Thank you ... questions?

» mish@es.aau.dk & jhm@es.aau.dk

